Irgendwas mit Daten - Datenanalyse in der Industrie

Irgendwas mit Daten - Datenanalyse in der Industrie

Produkte entwickeln, Versuche auswerten, Prozesse optimieren

#47 In Ordnung oder nicht in Ordnung, das ist hier die Frage!

Audio herunterladen: MP3 | AAC | OGG | OPUS

In Ordnung oder nicht in Ordnung, das ist hier die Frage!

👉 Wie funktioniert die Bewertung der Erklär-Qualität bei attributiven Zielgrößen (gut/schlecht)?
👉 Was ist die Konfusionsmatrix?
👉 Welche Kennzahlen werden für die Erklär-Qualität bei der Klassifizierung eingesetzt?

Vor der Nutzung von Modellen zum Beispiel für die Optimierung von Versuchs- oder Prozess-Einstellungen sollte immer die Aussagekraft oder Erkär-Qualität bewertet werden. In dieser Folge erfahren Sie, mit welchen Kennzahlen Machine Learning Modelle evaluiert werden, die eine attributive Zielgröße (gut/schlecht, in Ordnung/nicht in Ordnung) haben.

Diese Methoden werden eingesetzt, wenn das Versuchs- oder Prozess-Ergebnis eine Klassifizierung ist. Je treffsicherer das ML Modell vorhersagen kann, in welcher Klasse oder Kategorie das Ergebnis landet, desto besser ist es für den produktiven Einsatz geeignet. In dieser Folge bekommen Sie Informationen und Erklärungen zur Konfusionmatrix und den wichtigsten Kennzahlen zur Bewertung der Erklär-Qualität von Modellen mit attributiven Zielgrößen. Darüber hinaus erfahren Sie, wie die ROC-Kurve entsteht und warum die Fläche unter der Kurve (AUC) für ein gutes Modell deutlich größer als 0,5 sein muss.

Links

👉 Schwangere Männer Bild
👉 In Ordnung oder nicht in Ordnung - Erklär-Qualität bei attributiven Zielgrößen: Konfusionsmatrix, Accuracy, Precision, Recall, Speficity, F1-Score
👉 Visualisierung von ROC und AUC: What is AUC?

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, post@irgendwas-mit-daten.io


Kommentare


Neuer Kommentar

Durch das Abschicken des Formulars stimmst du zu, dass der Wert unter "Name oder Pseudonym" gespeichert wird und öffentlich angezeigt werden kann. Wir speichern keine IP-Adressen oder andere personenbezogene Daten. Die Nutzung deines echten Namens ist freiwillig.

Über diesen Podcast

Auch in Ihren Daten stecken wertvolle Informationen! Möchten Sie mit Daten Ihre Produkte schneller entwickeln? Ihre Versuche effizienter auswerten? Ihre Prozesse besser verstehen und optimieren? Dann ist dieser Podcast für Sie.

Barbara Bredner berät und begleitet seit 2003 Menschen in der Industrie bei der Datenauswertung in Forschung und Entwicklung, Prozess Engineering und Qualitätsmanagement. In ihrem Podcast erklärt sie, wie Sie eigene Daten auswerten und gezielt nutzen können. Sie gibt Tipps für solide und nachvollziehbare Analysen, damit Sie mit größerer Sicherheit und Klarheit belastbare Ergebnisse erreichen. Das Ziel sind abgesicherte Entscheidungen auf Grundlage Ihrer Datenanalysen!

von und mit Barbara Bredner

Abonnieren

Follow us